首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   2篇
  国内免费   2篇
测绘学   4篇
大气科学   7篇
地球物理   11篇
地质学   22篇
海洋学   4篇
天文学   2篇
自然地理   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1990年   1篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
11.
In the automation of identification of landscape features the vagueness arises from the fact that the attributes and parameters that make up a landscape vary over space and scale. In most of existing studies, these two kinds of vagueness are studied separately. This paper investigates their combination in identification of coast landscape units. Fuzzy set theory is used to describe the vagueness of geomorphic features due to the continuity in space. The vagueness resulted from the scale of measurement is evaluated by statistic indicators. The differences of fuzzy objects derived from data at differing resolutions (in size from 3×3 cells to 25×25 cells) are studied in order to examine these higher-order uncertainties.  相似文献   
12.
The long‐term evolution of channel longitudinal profiles within drainage basins is partly determined by the relative balance of hillslope sediment supply to channels and the evacuation of channel sediment. However, the lack of theoretical understanding of the physical processes of hillslope–channel coupling makes it challenging to determine whether hillslope sediment supply or channel sediment evacuation dominates over different timescales and how this balance affects bed elevation locally along the longitudinal profile. In this paper, we develop a framework for inferring the relative dominance of hillslope sediment supply to the channel versus channel sediment evacuation, over a range of temporal and spatial scales. The framework combines distinct local flow distributions on hillslopes and in the channel with surface grain‐size distributions. We use these to compute local hydraulic stresses at various hillslope‐channel coupling locations within the Walnut Gulch Experimental Watershed (WGEW) in southeast Arizona, USA. These stresses are then assessed as a local net balance of geomorphic work between hillslopes and channel for a range of flow conditions generalizing decadal historical records. Our analysis reveals that, although the magnitude of hydraulic stress in the channel is consistently higher than that on hillslopes, the product of stress magnitude and frequency results in a close balance between hillslope supply and channel evacuation for the most frequent flows. Only at less frequent, high‐magnitude flows do channel hydraulic stresses exceed those on hillslopes, and channel evacuation dominates the net balance. This result suggests that WGEW exists mostly (~50% of the time) in an equilibrium condition of sediment balance between hillslopes and channels, which helps to explain the observed straight longitudinal profile. We illustrate how this balance can be upset by climate changes that differentially affect relative flow regimes on slopes and in channels. Such changes can push the long profile into a convex or concave condition. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
13.
Published cosmogenic 36Cl production rates from Ca and K spallation differ by almost a factor of 2. In this paper we determine production rates of 36Cl from Ca and K in samples of known age containing little Cl. Ca-rich plagioclases and K-feldspars were separated from a total of 13 samples collected on the surfaces of four basaltic lava flows at Mt. Etna (38°N, Italy) and from a trachyte lava flow at Payun Matru volcano (36°S, Argentina). Eruption ages, determined by independent methods, range between 0.4 and 32 ka. Sample site elevations range between 500 and 2500 m. Corresponding scaling factors were calculated using five different published scaling models, four of which consider paleo-geomagnetic field variations integrated over the exposure durations. The resulting five data sets were then analyzed using a Bayesian statistical model that incorporates the major inherent uncertainties in a consistent way. Spallation production rates from Ca and K, considering all major uncertainties, are 42.2 ± 4.8 atoms 36Cl (g Ca)−1 a−1 and 124.9 ± 8.1 atoms 36Cl (g K)−1 a−1 normalized to sea level and high latitude using the scaling method of Stone (2000). Scaling models that account for paleo-geomagnetic intensity changes yield very similar mean values (at most +4%). If the uncertainties in the independent ages are neglected in the Bayesian model, the calculated element specific production rates would be about 12% higher. Our results are in agreement with previous production rate estimations both for Ca and K if only low Cl (i.e. ?20 ppm) samples are considered.  相似文献   
14.
Owens  Mathew  Lang  Matthew  Barnard  Luke  Riley  Pete  Ben-Nun  Michal  Scott  Chris J.  Lockwood  Mike  Reiss  Martin A.  Arge  Charles N.  Gonzi  Siegfried 《Solar physics》2020,295(3):1-15

Solar radiation variability spans a wide range in time, ranging from seconds to decadal and longer. The nearly 40 years of measurements of solar irradiance from space established that the total solar irradiance varies by \(\approx 0.1\%\) in phase with the Sun’s magnetic cycle. Specific intervals of the solar spectrum, e.g., ultraviolet (UV), vary by orders of magnitude more. These variations can affect the Earth’s climate in a complex non-linear way. Specifically, some of the processes of interaction between solar UV radiation and the Earth’s atmosphere involve threshold processes and do not require a detailed reconstruction of the solar spectrum. For this reason a spectral UV index based on the (FUV-MUV) color has been recently introduced. This color is calculated using SORCE SOLSTICE integrated fluxes in the FUV and MUV bands. We present in this work the reconstructions of the solar (FUV-MUV) color and Ca ii K and Mg ii indices, from 1749–2015, using a semi-empirical approach based on the reconstruction of the area coverage of different solar magnetic features, i.e., sunspot, faculae and network. We remark that our results are in noteworthy agreement with latest solar UV proxy reconstructions that exploit more sophisticated techniques requiring historical full-disk observations. This makes us confident that our technique can represent an alternative approach which can complement classical solar reconstruction efforts. Moreover, this technique, based on broad-band observations, can be utilized to estimate the activity on Sun-like stars, that cannot be resolved spatially, hosting extra-solar planetary systems.

  相似文献   
15.
Climate change impacts on global agriculture   总被引:1,自引:0,他引:1  
Based on predicted changes in the magnitude and distribution of global precipitation, temperature and river flow under the IPCC SRES A1B and A2 scenarios, this study assesses the potential impacts of climate change and CO2 fertilization on global agriculture. The analysis uses the new version of the GTAP-W model, which distinguishes between rainfed and irrigated agriculture and implements water as an explicit factor of production for irrigated agriculture. Future climate change is likely to modify regional water endowments and soil moisture. As a consequence, the distribution of harvested land will change, modifying production and international trade patterns. The results suggest that a partial analysis of the main factors through which climate change will affect agricultural productivity provide a false appreciation of the nature of changes likely to occur. Our results show that global food production, welfare and GDP fall in the two time periods and SRES scenarios. Higher food prices are expected. No matter which SRES scenario is preferred, we find that the expected losses in welfare are significant. These losses are slightly larger under the SRES A2 scenario for the 2020s and under the SRES A1B scenario for the 2050s. The results show that national welfare is influenced both by regional climate change and climate-induced changes in competitiveness.  相似文献   
16.
The Midcontinent Rift (MCR) of North America comprises a series of basaltic sheets, flows and intrusive rocks emplaced in the Lake Superior region during the Mesoproterozoic. The mafic rocks preserved on the northern flank of Lake Superior represent the older portions of the rift sequence and offer insights into the early development of the rift. New geochronological, geochemical and paleomagnetic data are presented for the dikes and sills located in and south of Thunder Bay, Ontario. Three sill suites are recognized within the study area; an earlier, spatially restricted ultramafic unit termed the Riverdale sill, the predominant Logan sills and Nipigon sills in the north of the study area. In addition three dike sets are recognized, the north-east trending Pigeon River swarm, the north-west trending Cloud River dikes and the Mt. Mollie dike. The geochemical data demonstrate that the majority of sills south of Thunder Bay are of Logan affinity and distinct from those of broadly similar age in the Nipigon Embayment to the north. The Pigeon River dikes that intrude the sills are geochemically coherent but distinct from the Logan sills and could not be feeders to the sills. The new age of 1109.2 ± 4.2 Ma for the Cloud River dike and its R polarity are consistent with published magnetostratigraphy. The Mt. Mollie dike age (1109.3 ± 6.3 Ma) indicates that it is not coeval with the spatially associated Crystal Lake gabbro as previously thought. The complexity of the dike and sill suites on the northern flank of suggests that the early phases of rifting occurred in distinct and changing stress fields prior to the main extensional rifting preserved in younger rocks to the south. The geochemistry and geochronology of the intrusions suggest a long-lived and complex magmatic history for the Midcontinent Rift.  相似文献   
17.
Closed hopper and complex swallowtail morphologies of olivine microcrysts have been described in the past in both mid-oceanic ridge basalts and subaerial tholeitic volcanoes and indicate fluctuations in magma undercooling. We describe similar morphologies in a Mid-Atlantic ridge pillow basalt (sample RD87DR10), and in addition we estimate the duration of temperature fluctuations required to produce these textures as follows: (1) Pairs of melt inclusions are arranged symmetrically around the centre of hopper crystals and each pair represents a heating–cooling cycle. Using the literature olivine growth rates relevant to the observed morphologies, and measuring the distance between two successive inclusions, we estimate the minimum time elapsed during one convection cycle. (2) The major element composition of melt inclusions (analysed by electron microprobe) was found to be in the range of the boundary layer measured in the glass surrounding the olivines, irrespective of their size. Several major elements demonstrate that this boundary layer results from rapid quenching on the seafloor, and not from crystal growth at depth, implying the inclusions had the same composition as the surrounding magma when they were sealed. Using diffusivity of slow diffusing elements such as Al2O3, we estimate the minimum time required for inclusion formation. These two independent approaches give concordant results: each cooling–heating cycle lasted between a few minutes and 1 h minimum. Thus, these crystals probably recorded thermal convection in small magmatic bodies (a dyke or shallow magma chamber) during the last hour or hours before eruption.  相似文献   
18.
19.
20.
The Zhuangzi Au deposit in the world-class Jiaodong gold province hosts visible natural gold, and pyrite as the main ore mineral, making it an excellent subject for deciphering the complex hydrothermal processes and mechanisms of gold precipitation. Three types of zoned pyrite crystals were distinguished based on textural and geochemical results from EPMA, SIMS sulfur isotopic analyses and NanoSIMS mapping. Py0 has irregular shapes and abundant silicate inclusions and was contemporaneous with the earliest pyrite–sericite–quartz alteration. It has low concentrations of As (0–0.3 wt.%), Au and Cu. Py1 precipitated with stage I mineralization shows oscillatory zoning with the bright bands having high As (0.4–3.9 wt.%), Au and Cu contents, whereas the dark bands have low contents of As (0–0.4 wt.%), Au and Cu. The oscillatory zoning represents pressure fluctuations and repeated local fluid phase separation around the pyrite crystal. The concentration of invisible gold in Py1 is directly proportional to the arsenic concentration. Py1 is partially replaced by Py2 which occurs with arsenopyrite, chalcopyrite and native gold in stage II. The replacement was likely the result of pseudomorphic dissolution–reprecipitation triggered by a new pulse of Au-rich hydrothermal fluids. The δ34S values for the three types of pyrite are broadly similar ranging from +?7.1 to +?8.8‰, suggesting a common sulfur source. Fluid inclusion microthermometry suggests that extensive phase separation was responsible for the gold deposition during stage II mineralization. Uranium–Pb dating of monazite constrains the age of mineralization to ca. 119 Ma coincident with a short compressional event around 120 Ma linked to an abrupt change in the drift direction of the subducting Pacific plate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号